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The method of potential functions using a Fourier transformation in the class of slowly increasing distributions, corresponding 
to the classical method of complex potentials, is proposed for solving well-known problems of the theory of elasticity for bodies 
with a defect. It is shown that when a Fourier transformation with respect to all the spatial variables is used, the solution of the 
dynamic problem of the theory of elasticity can also be represented in terms of a jump in the stresses and displacements at the 
defect. The correctness of the transformed problem is considered (in terms of an analogue of the Lopatinskii condition). The 
solution of the system of Helmholtz equations, to which the system of Lain6 equations is reduced in the case of the two-dimensional 
dynamic problem, is expressed in terms of the jump in the stresses and displacements at the defect as a result of solving the 
corresponding singular integral equations. © 2002 Elsevier Science Ltd. All rights reserved. 

1. T H E  A N I S O T R O P I C  T H R E E - D I M E N S I O N A L  P R O B L E M  
O F  T H E  T H E O R Y  O F  E L A S T I C I T Y  

Consider harmonic oscillations of a uniform anisotropic elastic half-space {x3 > 0} when there are no 
volume forces. In this case, the dynamic equations in displacements, written in a fixed rectangular 
Cartesian system of coordinates x = (xt, x2, x3), have the form (see, for example, [1]) 

~.Ci jk l  + p v 2 u i = O ,  i =  1,2,3 (1.1) 
b2U~ 

k.t,j=t 3XtOXy 

where u i are the components of  the complex displacement vector n(x) (fi(x, t) = Re{u(x)e-~Vt}, p is the 
density of the medium, Cqkt ( i , j ,  k, l = 1, 2, 3) are the constants of elasticity, which satisfy the relations 
C(ikl  = Gri M = Cklij , and the time factor e -'vt is omitted everywhere. 

The solution n = u(ua, u2, u3) of  Eq. (1.1) whenx3 > 0 (x3 < 0) will be said to be departing from the 
plane {x3 = 0} into the half-space {x3 > 0} ({x3 < 0}), if ui(xl,  x2, x3) (i = 1, 2, 3) are slow growth 
distributions and, in this case 

supp u i (x I , x 2, x 3) c {x 3 > 0} (Ix 3 < 0)), i = 1, 2, 3 (1.2) 

sing supp Ui(~ ,  g2, ~n) n 1~3 < 0} ({~3 > 0}) = 0, i = 1, 2, 3 (1.3) 

Here and henceforth Fourier transforms of the corresponding functions will be denoted by capital letters. 
To find the solution of Eq. (1.1) in the half-space {x3 > 0} in the class of  solutions departing from 

the plane {x3 = 0} into the half-space {x3 > 0}, which satisfy the conditions 

3 Ou i 
Y. ot~(Xl, x2)-~-[-(Xl, x 2, 0 ) = g i ( x l , x 2 )  
j=l o. , j  

u i ( x l , x 2 , 0 ) = h i ( X l , X 2 ) ;  x i E R ,  i=1,2,3 
(1.4) 
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where (x~(., .), gi(., .), hi(., .) (i,j = 1, 2, 3) are specified functions, we will apply a Fourier transformation 
with respect to the variables xa, Xz, x3 to Eqs (1.1), taking conditions (1.2) into account and Using boundary 
conditions (1.4). The Fourier transforms of the distributions ui(x l, x2, x3) (i = 1, 2, 3) then satisfy the 
equations 

3 
~, Cijkt~t~jUk(~l, ~2, ~3) - pvZUi(~I, ¢2, ~3) = F/,'(~I, ~2, ~3), i = l, 2, 3 (1.5) 

k,l,j=l 

where 

i3[ 
F,(¢,, ¢2, ~)  = -  Z Z ( c , j ,~ + ci3,, )¢ y °  (~, ~ ) + 

~-~ k=l j=l 

+Cisk3(iUi(~., ~2)+~3U°(~, ,  ¢3))], i =  1,2,3 

and 0 i Uk(¢l, ~z), Uk(~l, ~2) (k = 1, 2, 3) are the Fourier transforms of the functions ui(xl,x2, 0), OUi/OX3(X1, 
x2, 0) (i = 1, 2, 3), found from boundary conditions (1.4) after a Fourier transformation with respect 
to the variables xi, x2. 

For convenience we will rewrite system of equations (1.4) in the form AU = F and denote by 

A(~l,~2,¢3)=detA, Ai(¢1,~2,~3), i=1 ,2 ,3  

the determinant of the matrix obtained from A by replacing the i-th column by (FI, F2, F3) r. It can be 
shown that when Im ~1 = Im ~2 = I m  v = 0 the equation A(~I, ~2, ~3) = 0 has k pairs of complex- 
conjugate and 6-2k real roots ~ ( k  =. 0, 1, 2, 3, j = 1, 2, ..., 6). The Fourier transforms of the required 
distributions are given by the equations 

Ai(~l' ~2' ¢3) i=1,2,3 
u~(¢~, ¢2, ~3) = a(¢~, ¢2, ~3)' 

where 

A i ( ¢ 1 , ~ 2 , { 3 ) = 0 ,  i=1 ,2 ,3 ,  when {3={~,  Im{~>0,  j = l , 2  . . . . .  k 

We therefore have 3k additional conditions in the case of k roots ~3 with the positive imaginary part 
of the equation A(~I; ~2, ¢3) = 0, and 15 - 3k independent coefficients remain in boundary conditions 
(1.4). 

Hence, depending on the number of roots ~3 of the equation A(~ 1, ~2, ~3) = 0 with positive imaginary 
part, the number of additional conditions in the boundary-value problems may be different. 

In the case considered previously [2] when solving the boundary-value problem 

P(D)u=f(x),  xn>~O, n>~3 

Bj(D)u=g)(x), xn=O, j=l ..... Ix 

where x = (x I . . . . .  X n), P(~) was a homogeneous elliptic polynomial of order m and the number of boundary 
conditions was identical with the number of roots ~. of the equation P(~', ~.) = 0, ~' = (~1 . . . . .  ~,-1), in which the 
imaginary part is positive, the order of the differential operator Bj(D) does not exceed m - 1. 

Note that the difference between the proposed approach and the method considered previously in [2], lies in 
the fact that the Fourier transformation is not carried out with respect to the variable xn in [2]. Hence, the number 
of boundary conditions in [2], written for the required function, corresponds to the number of additional conditions 
introduced in the present paper, written for the Fourier transforms of the required function. Boundary conditions 
(1.4) in the variables Xl, x2, x3 can be assumed to be analogous to the Lopatinskii condition with variables ~1, . . . ,  
~ .  In both cases these conditions ensure that the problem is correct. For example, if there are less coefficients in 
boundary conditions (1.4), the problem may turn out to be overdetermined. 

The splitting of the conditions into boundary and additional conditions (Lopatinskii and boundary 
conditions) is made solely for convenience and to simplify the calculations: they can be combined in a 
natural way by changing to the variables xl, x2, x3 (xl . . . . .  x , )  or to the variables Ca, ~2, ~3 (¢1 . . . . .  ~ ) .  
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These conditions impose certain limitations on the coefficients o~(., .), hi( ., .), gi(., .) (i,j = 1, 2, 3) (the 
operators By(D) (j  = 1 . . . . .  it) in [2]). Hence, the approaches considered to solving the problem in a 
half-space are equivalent (n = 3 in [2]). 

If the roots ~3 of the equation A(~x, ~2, ~3) = 0 with positive imaginary part are known, the solution 
of problem (1.1), (1.3) can be written explicitly. It is then easy to obtain representations of the solutions 
of the problems in terms of the jumps in the stresses and displacements in the {x3 = 0} plane and it is 
convenient to investigate, for example, problems of the diffraction of an elastic harmonic wave by a 
sealed-in rigid screen situated in the {x3 = 0} plane and also the problem of the propagation of a crack 
in the {x3 = 0} plane [1]. 

2. F O R M U L A T I O N S  OF T H E  P R O B L E M S  F O R  AN I S O T R O P I C  
E L A S T I C  P L A N E  W I T H  A D E F E C T  

Suppose an infinitely thin defect F = {z = 0, c~ < x < 13} is situated in a uniform isotropic elastic space. 
We will consider two-dimensional problems of the dynamic theory of elasticity when 3/by = 0. We will 
assume that the stresses ~ ( . ,  "), cry(., .) and the displacements u(', "), v(., .) depend harmonically on 
time, and there are no volume forces. We will seek the complex amplitudes of the functions, omitting 
the time factor e -ikt. 

As is well known, with the above assumptions the equations of the dynamic theory of elasticity in 
displacements have the form 

O2u ~ '  O2u 2 _ (~,+2~t) 0-~-+(X+la) ~-~z +1~ bz---T+Pk u - 0  

~2v "" " ~2u 2 ~2u 
~t O-~- + ~ .  + la) b--~z + (~, + I.t) b--~- + pk2v = 0 (x, z) e R 2 \ F (2.1) 

where ~. and g are the Lam6 constants and p is the density of the body. 
The solution u(x, z), v(x, z) of the Lam6 equations (2.1) when z > 0 (z < 0) will be said to depart 

from the straight line z = 0 in the half-plane {z > 0} ({z < 0}) [3], if u(x, z), v(x, z) are the distributions 
of slow growth and 

suppu(x, z), supp v(x, Z) c {z > 0]({Z < 0}) 

sing supp U(~  4) c~ It  < O} ({4 > 0}) = 0 

(2.2) 

sing supp V(~, 4) r~ {4 < O} ({4 > 0}) = 0 (2.3) 

We will seek solutions of the problem in the class H]oc(R 2) ~ S ' (S '  is the class of solutions departing 
from the straight line z = 0). If the values of the function f( ' )  e S' ,  defined when z > 0 and z < 0, are 
identical when z = 0 - 0 and z = 0 + 0, it is natural to supplement it when z = 0 by assuming f(0)  = 
f (0  -O)  ---f(0 + 0). It can be shown that Eqs (2.3) includes conditions at infinity; functions from the 

, 1 2 class S carry away energy at infinity. The fact that the displacements belong to the class Ht~(R ) ensures 
2 that the energy is finite in any bounded region from R .  The boundary conditions of specific problems 

will be considered in Section 4. 
As is well known, the displacements u(., .) and v(., .) are determined by the longitudinal and transverse 

potentials (p(., .) and ~(., .) 

O(P bY &P ~¥ (2.4) 
u =  ~x + ~'-~-' v = ~z  ax 

Instead of the Lam6 equations for the functions u(', "), v(., .) we have the Helmholtz equations for the 
potentials (p(., .), ~(., .) 

~2 ~2 
A(p + kl2(i ) = 0, t ~  + k2~ = 0 (x, z) ~ R 2 \ F; ~ = ~ + ~z 2 (2.5) 

ki=k lc  i, i=1,2; q=~O.+21.t)lp, c2=.fff-~ 
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where ca and c 2 are the propagation velocities of longitudinal and transverse waves in a uniform isotropic 
elastic medium. 

The equations for the new required functions q0(., .), gt(., .) can be split. However, if the longitudinal 
and transverse potentials are functions from the class H~o~(R 2) n CS', the displacements, according to 
relations (2.4), may turn out to be less smooth functions. 

Using relations (2.4) and the equation in the sense of generalized functions from the class S' of mixed 
derivatives ~2/OXOZ = 02/OZ~X for the functions q~(-, '), ~(., .), u(', .), v(', "), it can be shown that 

()U ()V bu ()V = A~ (x, Z) E R 2 \ A ~x + ~  =A~' az az 

where 

A= {(x,z): x E R , z = 0 }  

Then 

Ou ~u =-k~cp, au bu = - k ~ v  ( x , z ) ~ R  2 \ A  (2.6) ax 
and the following equations hold 

~q~ _ t.2 ~ V ,  0 ¥  _ t,2 09  (x, z) ~ R 2 \ A (2.7) 
=-k' -fix Tz = ax az 

Note that Eqs (2.6) and (2.7) only hold when z > 0 and when z < 0, where the functions 9(', "), 
~(', "), u(', -), v(., .) and their first derivatives are understood in the usual sense, i.e. they are considered 
in those classes to which they actually belong. 

3. R E P R E S E N T A T I O N S  OF T H E  S O L U T I O N S  OF T H E  P R O B L E M S  IN 
T E R M S  OF J U M P S  IN T H E  S T R E S S E S  AND D I S P L A C E M E N T S  

We will consider the auxiliary t~roblem of a jump. We will seek solutions 9(', "), ~(', ") of Helmholtz 
equations (2.5) in the region R~Vk. For the present we will write the boundary conditions in terms of 
the stresses and displacements 

[u] l^ = au(x), [v ]IA= a v (x), [Xxz ] IA = at(x ), [az] IA = ao(x); x E R (3.1) 

[f]lA=f(x, 0 + 0 ) - f ( x ,  0 -0 ) - - - f* (x ,  O)-f - (x ,  O) 

In relations (3.1) the functions on the right-hand sides of the equations will be called potential functions. 
Applying a Fourier transformation with respect to the variable x to Eqs (2.4), we obtain 

U(~, z)=-i~*(~, z)+~zz (~, z), V(~,z)= ~zz (~, z)+ i~W(~, z) (3.2) 

Hence the first two equations of (3.1) can easily be written for the Fourier transforms of the functions 
9(', "), ~(', ") and for their first derivatives with respect to z. 

We will transform the remaining two conditions in (3.1). Using the well-known formulae 

I au ao ), a. 9v 
~= = ~ -g2z + ax ) '~ ~ = n~+(n+2~t ) -~-z  

and Eqs (2.6) we have 

2 bo 
Xxz = P-gX-X - )~2V, 

~u 
~z = -21.t ~ ' x  - Z'(P; x, = k~(x,+2~),  x2 = @ t  

We apply a Fourier transformation with respect to x to these equations 
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Txz(~, Z)= -i21.t~ ~--~-~ (~, Z) + (2l.t~ 2 -X2)W(~, z) 

~z(~, Z) --(2t.t~ 2 -XI)~(~, Z)+ i 2 1 ~ ?  (~, z) (3.3) 

Then U(~, z), V(~, z), Txz(~, z), Y~z(~, z) can be expressed in terms of the functions ~(~, z), q~(~, z) and 
their first derivatives with respect to the variable z. We will denote by ~0(~), ~ (~) ,  q~0(~), q~(~) the 
values of the functions ~(~, z), Odp/Oz(~, z), ~F(~, z), OW/Oz(~, z) where z = 0. As a result, boundary 
conditions (3.1) take the following form in terms of the Fourier transforms of the functions 

[W I - i ~ e 0 ]  I x = A . (~ ) ,  [¢,~ + i ~  0 ] I x = Au(~)  

[(21.t~ 2 - X2)% - i 2 ~ J  ] [ x = Ax(~) 

[(2g~ 2 - ZI)~0 + i21-t~Wl] IX= Aa(~); ~ e R 

(3.4) 

b,={(~,z): F=~R, z=O}, [F]Ix=F+(~)-F-(~) 
Here F-+(~) are the Fourier transforms of the functionsf-(x, 0) from (3.1). 

To solve this problem we now apply a Fourier transformation with respect to the variables x and z in 
Helmholtz equations (2.5) 

(k:  - ~2 - ~2 )(l)± (~, ~) __ 4- 1 - ~  [(I)~ (~) - i ; ~ ( ~ ) )  

(3.5) 
/ 

(k 2 _ ~2 - ;2) tp+(~,  ; )  _- .i. ~ [tt/l-l- (~) _ i~:(~)] 

The distributions cb+(~, ~) (u:+(~, O) and dp-(~, ~) (W-(~, ~)) are Fourier transforms of the function 
*p(x, z) (~(x, z)) when z > 0 and z < 0. 

Conditions (2.2) for the required functions are satisfied if and only if the following equalities hold 

q)l:t(~)-T- iTl(~)q)~(~) = 0, I~l> kl (3.6) 

Wz± (~):1:i72 (~)Wo (~)= 0, I~ l>k  2 (3.7) 

where 

7j(~)={l~l>~kj:+i~J-~-k2; [~[<ky: -a [@-~2} ,  j = l ,  2 

This means that the distributions ¢-+(~, 0 ,  q:-(~, 0 with respect to the variable ~ are limiting values 
of the functions, analytic in the upper half-plane. It can be shown that conditions (2.3) are equivalent 
to Eqs (3.6) when I~1 < kl, and (3.7) when I~1 < k2. Hence, the fact that the displacements belong 
to the class S' is equivalent to satisfying Eqs (3.6) and (3.7) for all ~. Then, to determine the functions 
¢~(~), ~ ( ~ ) ,  W~(~), WI(~) we have the system of linear algebraic equations (3.4) and (3.6), (3.7) with 

~ R. These functions can be expressed in terms of Fourier transforms of the known jumps in the stresses 
and displacements 

dpo(~) = 1 (.~i21.t~pl2(~)a~,(~)+ iql(~)Au (~)_ Zj~A~(~)+ Pl2(~)Aa(~)) 
~Yl (~) 

q)~ (~) = 1 (2g~o12(~)A u (~) -T- ql (~)4 (~) -T- ix~ ~jA ~ (~) + ipl 2 (~)A o (~)) 
Z 

(3.8) 

~O(~) = ] (F~) + P21 (F~)Ax(~) + X2~a(~)  ) ZY2 ((~) (iq2 ((~)Au (~) +/2'UJ~°21 (~)Au - 
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Here 

Z = -2X,X2, Pij(~) = ZjTi(~), q)(~) = Xj(X2 - 2~.~2); i,j = 1,2 

We can now correctly determine the functions ~±(~, ~), W~'(~, ~) using Eqs (3.5) and (3.8). It is 
convenient to carry out an inverse Fourier transformation with respect to the variable ~ for these 
functions. It can be easily verified that 

T e-i-~-~ d~ =-ie ±irt~(~) 1 

Then 

~ + (~,Z) = ~ ( ~ ) e  :t'i~'([), ~fl*(~,Z) = W~(~)e +-i~(~) (3.9) 

After the inverse Fourier transformation with respect to the variable ~ we obtain the functions 
q0(-, .) and ~(', "). The required functions u(', "), t,(., .) can be obtained using Eqs (2.4). Hence, the solution 
of the initial problem can be expressed in terms of jumps in the stresses and displacements or potential 
functions. 

Note that one can immediately obtain the Fourier transforms of the required functions xx~(., .), 
~( ' ,  "), u(', ') and v(-, .) using formulae (3.2) and (3.3), if we know the Fourier transforms of the functions 
q0(', ") and ~(',  .). Dynamic problems can then be considered in terms of stresses and displacements. 

4. THE I N T E G R A L  E Q U A T I O N S  OF THE T W O - D I M E N S I O N A L  
B O U N D A R Y - V A L U E  P R O B L E M S  

1. We will consider the plane problem of diffraction, when the defect is a soldered-on rigid screen. In 
this case, the displacement vector is continuous on passing through the straight line z = 0 and the 
boundary conditions of the problem have the form 

u Ir =-u0(x),  v Iv =--v0(x); x ~ (oc,[3) (4.1) 

[u]laXp=0, I [O]IAXp=0, ['Cxz]lAXp=0, [Oz]lA\p=0 (4.2) 

where u0('), v0(') are functions specified in the interval (tx, 15). Using the representations of the solutions 
of the two-dimensional problems in terms of jumps in the stresses and displacements (see Section 3) 
it can be shown that the functions au(') and a~(.) are identically equal to zero, while the functions as(') 
and a,~(.) are equal to zero in the set A\F. Hence, to solve the diffraction problem it is necessary to 
obtain the functions as(') and a~(') at the defect. Using boundary conditions (4.1) and Eqs (3.2) and 
(3.9), we obtain integral equations for determining these functions 

Lla¢ = 4rc(~, J a¢(t) ~ F12(~)ei(t-X)~d~dt = u0(x); x ~ (tx,[3) (4.3) 
+ 2~t) t~ 

i ~ +** ] aa(t ) ~ F2,({)eiU-X){cl~dt =u0(x); x E (Ct,~) 
ot - ¢ m  

(4.4) 

Here 

F0( ) = F,.J I l-' +O(1  = (np, J l-* 
Yit, q) gi 

F1~=_i~,+3___._.~, F~l=_i ~,+3g 
2g 2(% + 2g) 

i , j = l , 2  

Note that previously [4, 5] integral equations of static problems of the plane theory of elasticity were 
obtained for isotropic bodies with defects; in that case the logarithmic singularities of the integral 
equations are contained in the integrals with a Cauchy kernel with a variable limit. When solving dynamic 
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problems, integral equations (4.3) and (4.4) contain logarithmic singularities in integrals with infinite 
limits, and it is therefore convenient to consider them as pseudo-differential equations. 

2. We will consider the two-dimensional dynamic problem when the defect is a crack. Then, on passing 
through the straight line z = 0, the stress vector remains continuous and, in addition to conditions (4.2), 
the following functions are given 

~ It.= -G°(x), x~ z Iv = -x°~{x); x e (~.,13) 

In the problem of a jump, considered in Section 3, only the functions au(') and a~(.) are non-zero on 
F, and the integral equations equivalent to the boundary-value problem, have the form 

+ o ,  

L2a, = ikt ~ a,(t) I Gl2({)eif'-X){d{ dt =-x°z( x); x e (tx,[5) 
4n~ _**  

(4.5) 

4~ ~ au (t)_**I G21({)ei(t-X)~d~ dt= -G°(x); x • (tx,[3) (4.6) 

Here 

k 2 4 2 kl - ki + = 

=O,.} l ,~l+O(l) (npi, I I {1~* * ) ,  / , j = l , 2  

O~2 = G ~ ,  = 2(X + p.) 
X+2g 

5. N U M E R I C A L  S O L U T I O N S  OF T H E  I N T E G R A L  E Q U A T I O N S  

According to one of the approaches to solving integral equations of the first kind, we will analytically 
separate the principal parts of the operators of the left-hand of the integral equation and, in the numerical 
method, the action of the principal part will be taken into account in explicit form. 

The solution at( ') of integral equation (4.3) will be sought in the space of the distributions/4-~/2(F) 
[7] 

/4s(I") = {u : (l+l~ l)sU(~) e/.~(R I), suppu c F} 

It can be shown [7, 2], that the left-hand side of integral equation (4.3) defines a bounded pseudo- 
differential operator L l: H-~J2(F) --4 H~:2(F), HS(F) - the contraction of HS(R 1) on F. Moreover [8, 7], 
L 1 is a Fredholm pseudo-differential operator of order -1 and index 0. We will separate the principal 
part of the operator La analytically. After this, we split the left-hand side of integral equation (4.3) into 
two terms: a singular term with F]2l~1-1 instead of F12(~) and a regular term with El2({) = F12(~) - 
F121~1-1 instead of F12({). Using generalized Parseval equalities and carrying out inverse Fourier 
transformations of the functions FI21{]-1 and F[2({) [9], we obtain an integral equation equivalent to 
integral equations (4.3), in which, for convenience, we have changed from the interval (ix, [3) to the 
interval (-1, 1) 

' ( '  ) L'ltPl = S In +Kl(t,x) tpj(t)dt=fj(x); xe(-1 ,1)  (5.1) 
-I I t - x l  

Here 

qh(t) = ax(y+ - Y-0, K! (t,x) = gbfll2(7_(x - t)) - In 
It-xl 

_ n 1 (2) I)-kjH~2)(kj t I)) H{02)(ki I tl)), i =  ~ j ( t ) - ~ [ - ~ ( ~ ( k i H ,  (ki It I - 1,2 
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c a+13  f l ( x )=- - -Uo(~ l+-  y_x), "l+ = ~  (5.2) 
y_ 2 

b = - i _ ~  --~ 1 2~g(X + 2g) 
C ~ 

3~2 ~.+3g ~, + 3IX 

and H(n2)(") is the Hankel function of the second kind of order n. 
For a numerical solution of the integral equation obtained we used the Bubnov-Galerkin method 

with Chebyshev polynomials of the first kind as basis and trial functions. The numerical method is stable 
and effective for "small" dimensions of the screen [7] (the screen is assumed to be small if the length 
F is small compared with the wavelengths in space, i.e. when ki(ff-a) ~ 1 (i = 1, 2)). As a rule, a few 
Chebyshev polynomials are sufficient (for example, 5-10, depending on the required accuracy) for a 
good approximation of the function q01(. ). This is due to the fact that the Chebyshev polynomials are 
eigenfunctions of the principal part of the operator L 1. Moreover, the introduction of weighting factors 
in the case of small screens enables us to take into account the behaviour of the solution in the 
neighbourhood of end points, which on the whole, determine the solution on the screen. This method, 
as numerical experiments show, is effective up to values of ki(~-ct ) - 1 (i = 1, 2). 

In Fig. 1 curve 1 shows the approximate solution of integral equation (5.1) in the case when a plane 
wave is incident on the screen at an angle of 7t/4 with ct = 0.01, 13 = 0.02, k = 0.01, ~. = 0.5, Ix = 0.5, 
p = 2700 and M = N = 10; N is the number of Chebyshev polynomials in the expansion of the required 
function and M is the number of nodes in Hermite's quadrature formula used for the auxiliary 
calculations [4]. In view of the symmetry, we only show the region t/> 0. 

We will seek a solution ao(') of integral equation (4.4) in the space of the distributions/q-~/2(F). As 
in the case of integral equation (4.3) the left-hand side of integral equation (4.4) will be represented 
by a bounded Fredholm pseudo-differential operator of order -1 and index 0, acting from R-~/2(F) 
into H~/2(F). It can then be shown [7] that the functions u(', .), v(., .) ~ H~oc(R e) for any a~('), ao(') 
/~-~/2(F). Hence, the functions u(-, -), v(', ") satisfy the "condition on the edge", and the problem of 
diffraction by a soldered-in rigid screen is uniquely solvable [6]. 

To regularize an integral equation of the first kind analytically we separate the principal part of the 
operator on the left-hand side. The following integral equation equivalent to (4.4) can be obtained 

S l n l t - x l a o ( t ) d t + S  (O~+2g)bf '2j( t-x)-Inl t-xl)ao(t)dt=cvo(X);  x~(a,[~) (5.3) 

The function f : l ( ' )  and the constants b and c are determined by the third and last two formulae of (5.2). 
In Fig. 1 curve 2 shows the approximate solution of the integral equation to which integral equation 

(5.3) is reduced when changing from the interval (cq 13) to the interval (-1, 1). We will denote the required 
function by q01('). 

-1 
0 

Ro ,×I  - . ,  
- I m  qh x 

k 

j__.Y 
2 

l 

0.5 t 1.0 

Fig. 1 



Method of potential functions in problems of theory of elasticity for bodies with a defect 469 

Hence, we have considered integral equations with a logarithmic singularity in the kernel, equivalent 
to the two-dimensional problem of the diffraction of an elastic harmonic wave by a soldered-in rigid 
screen. 

Consider integral equation (4.5). It can be shown [7, 8], that the operator L2:/t1/2(F) --+ H-~/2(F) of 
the left-hand side of integral equation (4.5) is a bounded Fredholm pseudo-differential operator of order 
+ 1 and index zero. As in the case of integral equations (4.3) and (4.4), we separate the principal part 
of the operator L2. For convenience we split the kernel of the operator into regular and singular parts. 
When calculating the inverse Fourier transformation of the function G~2(') we will use the equation 

G,2(~) "-2 + (k~'h(~) 2 3 = - k2 ~ '2 (~ )  - ~ (~) + ~,3 ( ~ ) )  

Then, using the generalized Parseval equalities and calculating the inverse Fourier transformation for 
the regular and singular parts of the kernel of the integral operator [9], we obtain an integral equation 
in which, using replacement of variables, we change from the interval (ct, [3) to the interval (-1, 1) 

Here 

(P2(t)=a,(y+-y_t), K2(t,x)=Te_bJ g12(y_(~-t))d~- l n l t _ x  I 
- 1  

/-~-~( 4 {k 3 gij (t) = ~1-~ ~ k - ~ l  ~ j H~z) (kj It I)- k'3, H~ z) (ki It D + (5.5) 

+ (_1), 3 ,,.2,a('),~. itl)_k2H(2')(klltl)))_k2H(o2)(kjltl)} i , j = l , 2  
N 

I t--~ ~"2"2 t"2 . 

./-~ 7~ + 212 n(~, + 212) 
f2(x)=V-c'C°z(V+-r-x) ,  b = - ~ ' 2 " ~ + 7 ) ,  c=il.t(L+12 ) 

and Hn0)(") is the Hankel function of the first kind and order n. 
The same observations apply to the numerical method of solving this hypersingular integral equation 

as applied in the case of singular integral equation (5.1). In the Bubnov-Galerkin method, Chebyshev 
polynomials of the second kind are used as the basis and trial functions. 

In Fig. 1 curve 3 represents the approximate solution of integral equation (5.4). The initial data is 
the same as in the case of integral equation (5.1). For convenience the required function is denoted in 
the figure by qh(.). 

Consider integral equation (4.6). The principal part of the operator of the left-hand side of integral 
equation (4.6) is the same as in the case of integral equation (4.5). 

The operator of the left-hand side of integral equation (4.6), like integral equation (4.5), is a bounded 
. . . .  1/  - - 1  

Fredholm pseudo-differential operator of order + 1 and index 0, acting from/2/ Z(F) mto H a(F). Then, 
it can be shown [7], that for any a,('), ao(.) E/~/;(F), the functions u(., .), v(., .) ~ H~o¢(RZ). Hence, the 
displacements u(., .), v(', ") satisfy the "condition on the edge", and the dynamic problem for a plane 
with a crack is uniquely solvable [6]. 

It is convenient to use the following equality for the inverse Fourier transformation of the kernel of 
the operator of the left-hand side of integral equation (4.6) 

"/, (g) "/, ('D 

It can be shown that integral equation (4.6) is equivalent to the following integral equation 

= - c o ° ( x ) ;  x ~ ( a , p )  (5.6) 
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The function g21(') and the constants b and c are defined by the third and the last two formulae of 
(5.5). 

The approximate solution of the integral equation, to which integral equation (5.6) reduces on 
changing from the interval (t~, [3) to the interval (-1, 1), is similar to the solutions shown in the figure 
by curves 3. 

Hence, we have considered hypersingular integral equations, equivalent to the dynamic problem for 
a plane with a defect. 

Note that in the dynamic problems considered, the longitudinal and transverse potentials are auxiliary. 
They can be conveniently used, since it is much easier to apply a Fourier transformation to the 
independent Helmholtz equations than to the connected Lam6 equations. Moreover, in the auxiliary 
problem we can distinguish the problems for the Fourier transforms of longitudinal and transverse 
potentials. In this case the boundary integral equations are obtained in terms of displacements and 
stresses, and not potentials. Hence, the use of the functions q0(., .), ~(., .) does not reduce the smoothness 
of the solutions of the problems. 

Note that in this paper, when solving the problems, a Fourier transformation is applied to all the 
variables. This immediately enables us to obtain algebraic equations for the Fourier transforms of the 
required functions instead of ordinary differential equations, which are obtained in the general approach 
to the solution of similar problems. 
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